135 research outputs found

    Observations of the Askaryan Effect in Ice

    Get PDF
    We report on the first observations of the Askaryan effect in ice: coherent impulsive radio Cherenkov radiation from the charge asymmetry in an electromagnetic (EM) shower. Such radiation has been observed in silica sand and rock salt, but this is the first direct observation from an EM shower in ice. These measurements are important since the majority of experiments to date that rely on the effect for ultra-high energy neutrino detection are being performed using ice as the target medium. As part of the complete validation process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we performed an experiment at the Stanford Linear Accelerator Center (SLAC) in June 2006 using a 7.5 metric ton ice target, yielding results fully consistent with theoretical expectations

    New Limits on the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment

    Get PDF
    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of 3 EeV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultra-high energy extensive air showers.Comment: 4 pages, 2 table

    Experimental tests of sub-surface reflectors as an explanation for the ANITA anomalous events

    Get PDF
    The balloon-borne ANITA [1] experiment is designed to detect ultra-high energy neutrinos via radio emissions produced by in-ice showers. Although initially purposed for interactions within the Antarctic ice sheet, ANITA also demonstrated the ability to self-trigger on radio emissions from ultra-high energy charged cosmic rays [2] (CR) interacting in the Earth's atmosphere. For showers produced above the Antarctic ice sheet, reflection of the down-coming radio signals at the Antarctic surface should result in a polarity inversion prior to subsequent observation at the ~35–40 km altitude ANITA gondola. Based on data taken during the ANITA-1 and ANITA-3 flights, ANITA published two anomalous instances of upcoming cosmic-rays with measured polarity opposite the remaining sample of ~50 UHECR signals [3, 4]. The steep observed upwards incidence angles (25–30 degrees relative to the horizontal) require non-Standard Model physics if these events are due to in-ice neutrino interactions, as the Standard Model cross-section would otherwise prohibit neutrinos from penetrating the long required chord of Earth. Shoemaker et al. [5] posit that glaciological effects may explain the steep observed anomalous events. We herein consider the scenarios offered by Shoemaker et al. and find them to be disfavored by extant ANITA and HiCal experimental data. We note that the recent report of four additional near-horizon anomalous ANITA-4 events [6], at >3σ significance, are incompatible with their model, which requires significant signal transmission into the ice

    Observation of Ultrahigh-Energy Cosmic Rays with the ANITA Balloon-Borne Radio Interferometer

    Get PDF
    We report the observation of 16 cosmic ray events with a mean energy of 1: 5 x 10(19) eV via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission. We present measurements in the 300-900 MHz range, which are the first self-triggered, first ultrawide band, first far-field, and the highest energy sample of cosmic ray events collected with the radio technique. Their properties are inconsistent with current ground-based geosynchrotron models. The emission is 100% polarized in the plane perpendicular to the projected geomagnetic field. Fourteen events are seen to have a phase inversion due to reflection of the radio beam off the ice surface, and two additional events are seen directly from above the horizon. Based on a likelihood analysis, we estimate angular pointing precision of order 2 degrees for the event arrival directions

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Discovering the highest energy neutrinos with the Payload for Ultrahigh Energy Observations (PUEO)

    Get PDF
    The Payload for Ultrahigh Energy Observations (PUEO) is a NASA Long-Duration Balloon Mission that has been selected for concept development. PUEO has unprecedented sensitivity to ultra-high energy neutrinos above 1018 eV. PUEO will be sensitive to both Askaryan emission from neutrino-induced cascades in Antarctic ice and geomagnetic emission from upward-going air showers that are a result of tau neutrino interactions. PUEO is also especially well-suited for point source and transient searches. Compared to its predecessor ANITA, PUEO achieves better than an order-of-magnitude improvement in sensitivity and lowers the energy threshold for detection, by implementing a coherent phased array trigger, adding more channels, optimizing the detection bandwidth, and implementing real-time filtering. Here we discuss the science reach and plans for PUEO, leading up to a 2024 launch

    The Payload for Ultrahigh Energy Observations (PUEO): a white paper

    Get PDF
    The Payload for Ultrahigh Energy Observations (PUEO) long-duration balloon experiment is designed to have world-leading sensitivity to ultrahigh-energy neutrinos at energies above 1 EeV. Probing this energy region is essential for understanding the extreme-energy universe at all distance scales. PUEO leverages experience from and supersedes the successful Antarctic Impulsive Transient Antenna (ANITA) program, with an improved design that drastically improves sensitivity by more than an order of magnitude at energies below 30 EeV. PUEO will either make the first significant detection of or set the best limits on ultrahigh-energy neutrino fluxes

    Characteristics of Four Upward-Pointing Cosmic-Ray-like Events Observed with ANITA

    Get PDF
    We report on four radio-detected cosmic-ray (CR) or CR-like events observed with the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload. Two of the four were previously identified as stratospheric CR air showers during the ANITA-I flight. A third stratospheric CR was detected during the ANITA-II flight. Here, we report on characteristics of these three unusual CR events, which develop nearly horizontally, 20-30 km above the surface of Earth. In addition, we report on a fourth steeply upward-pointing ANITA-I CR-like radio event which has characteristics consistent with a primary that emerged from the surface of the ice. This suggests a possible τ-lepton decay as the origin of this event, but such an interpretation would require significant suppression of the standard model τ-neutrino cross section

    A search for ultrahigh-energy neutrinos associated with astrophysical sources using the third flight of ANITA

    Get PDF
    The ANtarctic Impulsive Transient Antenna (ANITA) long-duration balloon experiment is sensitive to interactions of ultrahigh-energy (E>1018 eV) neutrinos in the Antarctic ice sheet. The third flight of ANITA, lasting 22 days, began in December 2014. We develop a methodology to search for energetic neutrinos spatially and temporally coincident with potential source classes in ANITA data. This methodology is applied to several source classes: the potential IceCube-identified neutrino sources TXS 0506+056 and NGC 1068, flaring high-energy blazars reported by the Fermi All-Sky Variability Analysis, gamma-ray bursts, and supernovae. Among searches within the five source classes, one candidate was identified as associated with SN 2015D, although not at a statistically significant level. We proceed to place upper limits on the source classes. We further comment on potential application of this methodology to more sensitive future instruments

    An analysis of a tau-neutrino hypothesis for the near-horizon cosmic-ray-like events observed by ANITA-IV

    Get PDF
    We present the results of a simulation of the acceptance of the Antarctic Impulsive Transient Antenna (ANITA) to possible υτ point source fluxes detected via τ-lepton-induced air showers. This investigation is framed around the detection of four upward-going extensive air shower events observed very close to the horizon in ANITA-IV. These four events as well as the overall diffuse and point source exposure to Earth-skimming υτ are also compared against published ultrahigh-energy neutrino limits from the Pierre Auger Observatory. We find that while these four events were detected at sky coordinates close to ANITA’s maximum υτ sensitivity and were not simultaneously visible by Auger, the implied fluence necessary for ANITA to observe these events is in tension with limits set by Auger across a wide range of energies and is additionally in tension with ANITA’s Askaryan in-ice neutrino channel above 1019 eV
    corecore